

200794 - Pavimentos de Estradas I

INTRODUÇÃO AO PROJETO DE RODOVIAS- 2/2.

Prof. Carlos Eduardo Troccoli Pastana

pastana@projeta.com.br

(14) 3422-4244

AULA 7

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas
- a. Velocidade de Diretriz ou de Projeto (Vp):

A American Association of State Highway and Transportation Officials (AASHTO) define velocidade de projeto, o velocidade diretriz, como a máxima velocidade que um veículo pode manter, em determinado trecho, em condições normais, com segurança.

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas
- a. <u>Velocidade de Diretriz ou de Projeto (Vp):</u>

A Velocidade de projeto é a velocidade selecionada para fins de projeto da via e que condiciona as principais características da mesma, tais como:

- Curvatura;
- Superelevação;
- Distâncias de visibilidade.

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas
- a. <u>Velocidade de Diretriz ou de Projeto (Vp):</u>

A Velocidade diretriz ou de projeto de um determinado trecho de estrada deve ser coerente com a topografia da região e a classe da rodovia, devendo-se utilizar velocidades diferentes em casos especiais, como a variação acentuada na topografia da região.

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas
- a. <u>Velocidade de Diretriz ou de Projeto (Vp):</u>

Um dos principais fatores que governam a adoção de valores para a velocidade diretriz ou de projeto é o custo de construção resultante.

Velocidades diretrizes ou de projeto elevadas requerem características geométricas mais amplas.

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas
- a. <u>Velocidade de Diretriz ou de Projeto (Vp):</u>

Definida a velocidade de projeto, a maioria das características geométricas serão calculadas em função dessa velocidade, procurando-se manter um padrão homogêneo ao longo de todo o trecho, evitando surpresas para o motorista e conduzindo-o a um padrão também uniforme de operação.

1.9.3 – Quanto as características técnicas

1.9.3.1 - Descrição das principais características técnicas

a. <u>Velocidade de Diretriz ou de Projeto (Vp):</u>

	Velocidade de projeto (km/h)							
Classe de projeto	Relevo							
	Plano	Plano Ondulado Mo						
Classe 0	120	100	80					
Classe I	100	80	60					
Classe II	100	70	50					
Classe III	80	60	40					
Classe IV	80-60	60-40	40-30					

http://www.der.sp.gov.br/Website/Acessos/Documentos/Tecnicas.aspx - IP-DE-F00/001

1.9.3 – Quanto as características técnicos

1.9.3.1 – Descrição das principais técnicas

Velocidade de conte a.

Class	situaços exide releve exide relevel, porável, porável, porável porável elocidades elocid	de-se ado de-se ado de projeto de projeto	de até
Class	iavidades	kmn.	60
Classe	elocius 13	70	50
Classe II		60	40
Classe IV	80-60	60-40	40-30

http://www.der.sp.gov.br/Website/Acessos/Documentos/Tecnicas.aspx - IP-DE-F00/001

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas

b. <u>Velocidade de Operação (Vo):</u>

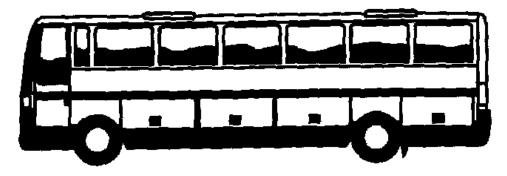
É a média de velocidade para todo o tráfego ou parte dele, obtida pela soma das distâncias percorridas dividida pelo tempo de percurso. Pode variar com as características geométricas, condição e característica do veículo e motorista, com as condições do pavimento, policiamento e clima.

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas

c. <u>Veículo de Projeto:</u>

O veículo de projeto deve ser selecionado a fim de estabelecer controles de projeto para a via, condicionando seu dimensionamento geométrico e o da algumas de suas características estruturais.

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas
- c. <u>Veículo de Projeto:</u>


Existem quatro grupos básicos de veículos a serem adotados conforme as características predominantes do tráfego (no Brasil, normalmente o veiculo CO), a saber:

 VP : Veículos de passeio leves, física e operacionalmente assimiláveis ao automóvel, incluindo utilitários, pickups, furgões e similares

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas

c. <u>Veículo de Projeto:</u>

 CO : Veículos comerciais rígidos, compostos de unidade tratora simples. Abrangem os caminhões e ônibus convencionais, normalmente de 2 eixos e 6 rodas.

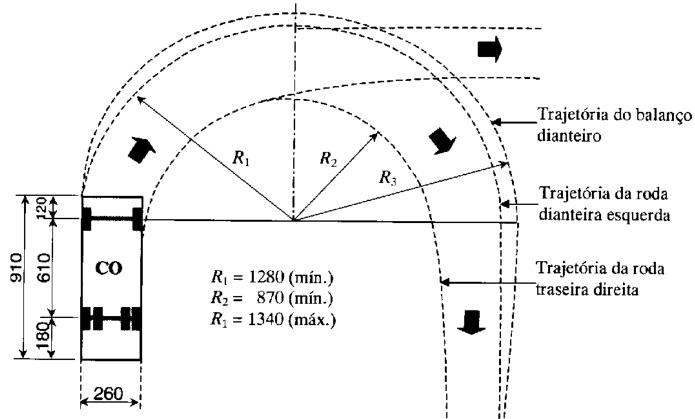
- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas

c. <u>Veículo de Projeto:</u>

- SR : Veículo comercial articulado, compostos normalmente de unidade tratora simples e semirreboque.
- O: Representa os veículos comerciais rígidos de maiores dimensões que o veículo CO básico, como ônibus de longo percurso e de turismo, e caminhões longos.

1.9.3 – Quanto as características técnicas

1.9.3.1 – Descrição das principais características técnicas


c. <u>Veículo de Projeto:</u>

Características	Veículos leves (VP)	Caminhões e ônibus convencionais (CO)	Caminhões e Ônibus longos (O)	Semi- reboques (SR)	Reboques (RE)
Largura total	2,1	2,6	2,6	2,6	2,6
Comprimento total	5,8	9,1	12,2	16,8	19,8
Raio mínimo da roda externa dianteira	7,3	12,8	12,8	13,7	13,7
Raio mínimo da roda interna traseira	4,7	8,7	7,1	6,0	6,9

http://www.der.sp.gov.br/Website/Acessos/Documentos/Tecnicas.aspx - IP-DE-F00/001

- 1.3.3 Quanto as características técnicas
- 1.3.3.1 Descrição das principais características técnicas

c. <u>Veículo de Projeto - CO:</u>

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas

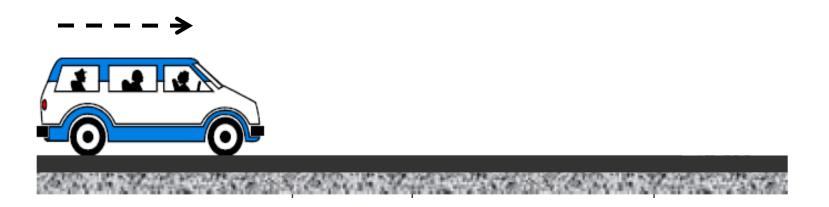
d. <u>Distância de Visibilidade:</u>

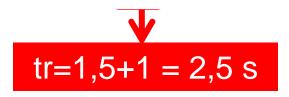
A distância de visibilidade e a extensão de rodovia visível ao condutor. Tal parâmetro deve ser adotado de modo a assegurar condutores não sofram limitações visuais ligadas às características diretamente geométricas das rodovias e que assim possam controlar seus veículo a tempo, seja imobilizá-los, seja para realizar ou interromper uma manobra de ultrapassagem, caso necessário.

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas

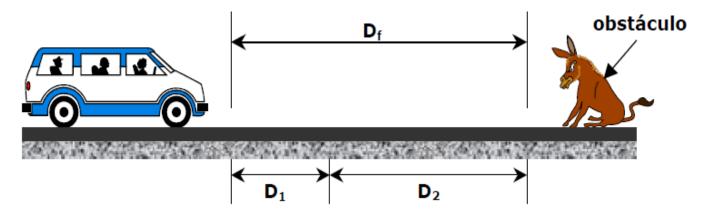
d. <u>Distância de Visibilidade</u>

Um dos fatores mais importantes para a segurança e eficiência operacional de uma estrada é a sua capacidade de poder proporcionar boas condições de visibilidade aos motoristas que pôr ela trafegam, podendose citar:


- Distância de Visibilidade de Parada;
- Distância de Visibilidade de Ultrapassagem


- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas
- e. <u>Distância de visibilidade de parada ou</u> <u>frenagem (*Df*)</u>

É a distância $\underline{\text{mínima}}$ para que um veículo que percorre a estrada, na Vp, possa parar, $\underline{\text{com}}$ $\underline{\text{segurança}}$, antes de atingir um obstáculo em sua trajetória. Para se determinar a distância de frenagem deve-se considerar o $\underline{\text{tempo}}$ de $\underline{\text{percepção}}$ e o $\underline{\text{tempo}}$ de reação do motorista.

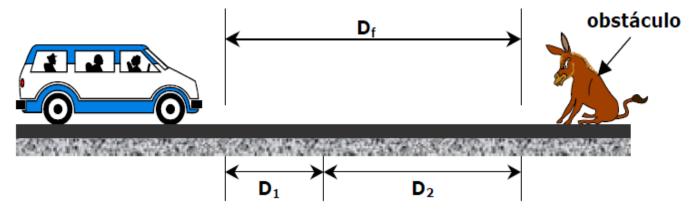


- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas
- e. <u>Distância de visibilidade de parada ou</u> <u>frenagem (*Df*)</u>

$$D_f = D_1 + D_2$$

$$D_f = D_1 + D_2$$

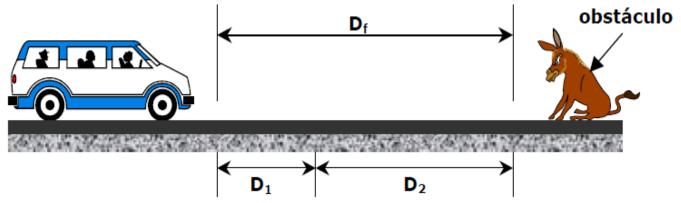
$$D_1 = v \times t_r$$


tr=1,5+1=2,5 s

Logo:

$$D_1 = 0.7V \longrightarrow$$

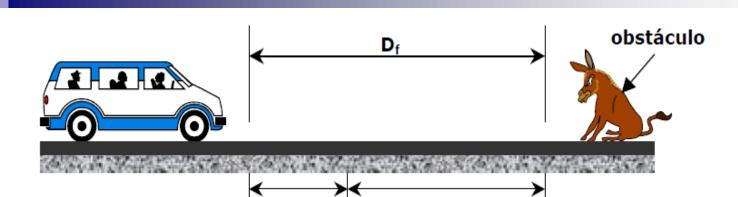
$$V=\ {
m Velocidade\ de\ projeto\ (km/h)}$$



A segunda parcela corresponde à distância percorrida desde o início da atuação do sistema de frenagem até a imobilização do veículo (D_2). A energia cinética do veículo no início do processo de frenagem deve ser anulada pelo trabalho da força de atrito ao longo da distância de frenagem. Assim temos:

$$\Delta E_c = \tau_{F_a} \longrightarrow \frac{p \cdot v^2}{2} = P f_L \cdot D_2$$

$$D_2 = \frac{v^2}{2.g.f_L}$$



Em unidades usuais, e sendo $g = 9.8 \, m/s2$, temos:

$$D_2 = \frac{(\frac{V}{3.6})^2}{2 \times 9.8 \times f_L}$$

Quando o trecho da estrada considerada está em rampa, a distância de frenagem em subida será menor que a determinada na equação acima, e maior em caso de descida. Para levar em conta o efeito das rampas é usada a equação abaixo:

$$D_2 = \frac{V^2}{255 \times (f_L + i)}$$

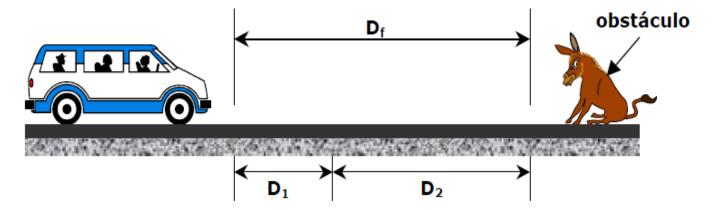
O coeficiente de atrito não é o mesmo para todas as velocidades, diminuindo a medida que a velocidade aumenta.

As tabelas abaixo apresentam os valores de distância de frenagem e coeficiente de atrito, respectivamente, recomendados pelo DNER (1975).

O coeficiente de atrito longitudinal (fL) adotados para projeto:

Coeficiente de atrito longitudinal pneu/pavimento (Vdiretriz)

Vdiretriz (km/h)	30	40	50	60	70	80	90	100	120
f = fL	0,40	0,37	0,35	0,33	0,31	0,30	0,29	0,28	0,25


Fonte: DNIT

Coeficiente de atrito longitudinal pneu/pavimento (Vmédia)

Vdiretriz (km/h)	30	40	50	60	70	80	90	100	120
Vmédia (km/h)	30	38	46	54	62	71	79	86	98
f = fL	0,40	0,37	0,35	0,33	0,31	0,30	0,29	0,28	0,25

Fonte: DNIT

Assim, teremos para a distância de visibilidade de parada:

$$D_f = 0.70V + \frac{V^2}{255 \times (f_L + i)}$$

Onde:

 $D_{\scriptscriptstyle f}=\,$ Distância de visibilidade de parada ou frenagem (m).

i= Greide, em m/m ((+), se ascendente; (-) se descendente).

 $f_L = \text{Coeficiente de atrito longitudinal pneu/pavimento.}$

1.9.3 – Quanto as características técnicas

1.9.3.1 – Descrição das principais características técnicas

Exemplo aplicativo 1

Calcular a distância de visibilidade de parada recomendada numa estrada cuja velocidade diretriz é 100 km/h.

$$D_f = 0.70 \times V_{med} + \frac{V_{med}^{2}}{255 \times (f_L + i)}$$

1.9.3 - Quanto as características técnicas

1.9.3.1 – Descrição das principais características técnicas

Exemplo aplicativo 1

Coeficiente de atrito longitudinal pneu/pavimento (Vmédia)

Vdiretriz (km/h)	30	40	50	60	70	80	90	100	120
Vmédia (km/h)	30	38	46	54	62	71	79	86	98
f = fL	0,40	0,37	0,35	0,33	0,31	0,30	0,29	0,28	0,25

$$D_f = 0.70 \times V_{med} + \frac{1}{255 \times (f_L + i)}$$

Considerações:

- Adotado i = 2% = 0.02.
- Velocidade média = 86 km/h.

$$\Rightarrow$$

fL = 0.28

Fonte: DNIT

1.9.3 – Quanto as características técnicas

1.9.3.1 – Descrição das principais características técnicas

Exemplo aplicativo 1

Calcular a distância de visibilidade de parada recomendada numa estrada cuja velocidade diretriz é 100 km/h.

$$D_f = 0.70 \times 86 + \frac{86^2}{255 \times (0.28 + 0.02)}$$

$$D_f = 156 \, \mathrm{metros}$$

1.9.3 – Quanto as características técnicas

1.9.3.1 - Descrição das principais características técnicas

Exemplo aplicativo 2

Calcular a distância de visibilidade de parada excepcional numa estrada cuja velocidade diretriz é 100 km/h.

$$D_f = 0.70 \times V_p + \frac{V_p^2}{255 \times (f_L + i)}$$

1.9.3 - Quanto as características técnicas

1.9.3.1 – Descrição das principais características técnicas

Exemplo aplicativo 2

Coeficiente de atrito longitudinal pneu/pavimento (Vmédia)

Vdiretriz (km/h)	30	40	50	60	70	80	90	100	120
Vmédia (km/h)	30	38	46	54	62	71	79	86	98
f = fL	0,40	0,37	0,35	0,33	0,31	0,30	0,29	0,28	0,25

 $D_f = 0.70 \times V_p + \frac{{V_p}^2}{255 \times (f_L + i)}$

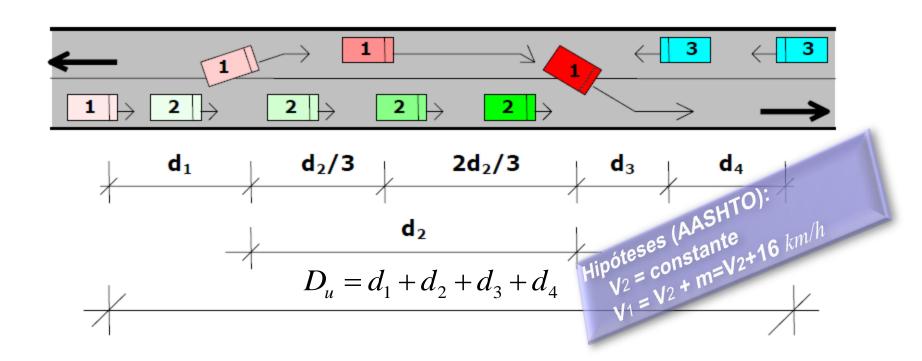
Considerações:

- Adotado i = 2% = 0.02.

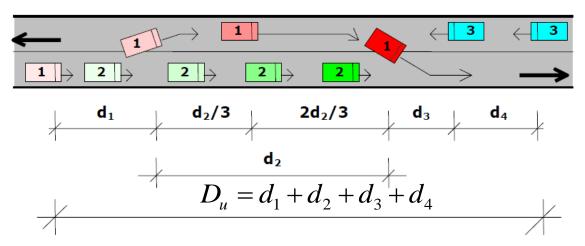
Fonte: DNIT

1.9.3 – Quanto as características técnicas

1.9.3.1 – Descrição das principais características técnicas


Exemplo aplicativo 2

Calcular a distância de visibilidade de parada excepcional numa estrada cuja velocidade diretriz é 100 km/h.


$$D_f = 0.70 \times 100 + \frac{100^2}{255 \times (0.28 + 0.02)}$$

$$D_f = 200 \, \mathrm{metros}$$

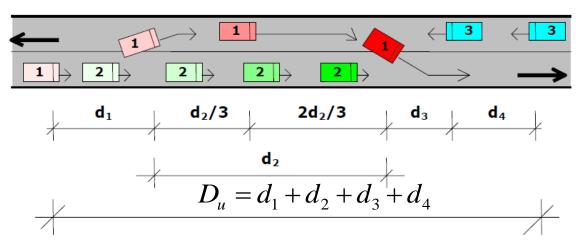
- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas
- f. <u>Distância de visibilidade de ultrapassagem (Du)</u>

Definições:

 t_1 = tempo da manobra inicial

t₂ = tempo de ocupação da faixa oposta

a = aceleração média (km/h/s)


d₁ = durante o tempo de reação e aceleração inicial

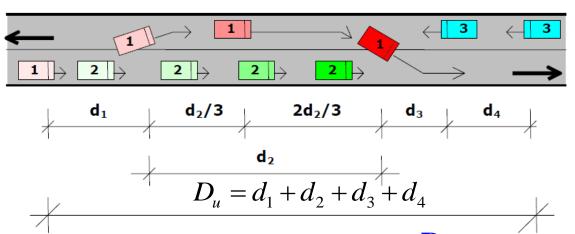
d₂ = durante o tempo de ocupação da faixa oposta

 d_3 = distância de segurança entre os veículos (1) e (3)

d₄ = distância percorrida pelo veículo (3), que aparece no instante em que o veículo
 (1) acha que não tem mais condição de desistir da ultrapassagem

Expressões:

$$D_u = d_1 + d_2 + d_3 + d_4$$

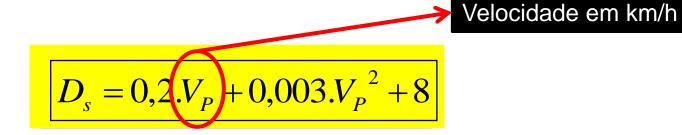

$$d_1 = 0.278 \cdot t_1 (V_1 - m + (a \cdot t_1 / 2))$$

$$d_2 = 0,278 \cdot V_1 \cdot t_2$$

$$d_3$$
 = tabelado

$$d_4 = (2 . d_2) / 3$$

Valores adotados para cálculo da Du pela AASHTO (1994)


Grupo de velocidades (km/h)	50-65	66-80	81-95	96-110
Vel. média de ultrapassagem (km/h)	56	70	84	99
Manobra inicial				
a (km/h/s)	0,88	0,89	0,92	0,94
t ₁ (s)	3,6	4,0	4,3	4,5
$\mathbf{d_1}$ (m)	45	65	90	110
Ocupação da faixa da esquerda				
t ₂ (s)	9,3	10,0	10,7	11,3
d ₂ (m)	145	195	205	315
Espaço de segurança				
\mathbf{d}_3 (m)	30	55	75	90
Veículo que trafega no sentido oposto				
d ₄ (m)	95	130	165	210
$\mathbf{D_u} = \mathbf{d_1} + \mathbf{d_2} + \mathbf{d_3} + \mathbf{d_4} $ (m)	315	445	580	725

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas
- g. <u>Distância de segurança entre dois veículos (Ds)</u>

Sempre que dois veículos estiverem percorrendo a mesma faixa de tráfego no mesmo sentido deverá existir entre eles uma distância mínima, de forma que se o veículo da frente frear haja espaço suficiente para que o outro veículo possa também frear e parar sem perigo de colisão com o veículo da frente.

O valor do tempo de percepção e reação (tr) é da ordem de 0,75 s.

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas
- g. <u>Distância de segurança entre dois veículos (Ds)</u>

 $t_r = 0.75$ s (motorista atento, próximo ao veículo da frente).

 $\dot{K}=$ 0,003 (diferentes desacelerações: o veículo detrás não percebe, de imediato, a intensidade da frenagem do veículo que vai à frente).

 $t_r = 8,00$ metros (comprimento dos veículos).

1 – INTRODUÇÃO AO PROJETO DE RODOVIAS

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas
- g. <u>Distância de segurança entre dois veículos (Ds)</u>

Exemplo aplicativo 3

Calcular a distância de segurança entre dois veículos para uma estrada cuja velocidade diretriz é 100 km/h.

$$D_s = 0.2 \cdot V_P + 0.003 \cdot V_P^2 + 8$$

$$D_s = 0.2 \times 100 + 0.003 \times 100^2 + 8$$

1 – INTRODUÇÃO AO PROJETO DE RODOVIAS

- 1.9.3 Quanto as características técnicas
- 1.9.3.1 Descrição das principais características técnicas
- g. <u>Distância de segurança entre dois veículos (Ds)</u>

Exemplo aplicativo 3

Qual a distância que um veículo percorre, se trafega a 100 km/h ?

Transformando km/h para m/s:

$$\frac{km}{h} = \frac{1000 \times m}{60 \times 60 \times s} = \frac{1}{3.6} \, m/s$$
 $100 \, \frac{km}{h} = 100 \times \frac{1}{3.6} \times \frac{m}{s} = 27.8 \, \text{m/s}$

Portanto, devemos ficar no mínimo 2 segundos como distância de segurança do veículo que trafega na frente.

2.1 – Fases de Trabalho:

Consideram-se, no nosso caso, duas fases distintas na elaboração do projeto:

- Fase de Anteprojeto, onde serão analisadas alternativas de traçados (uma por aluno) e efetuado estudos comparativos para escolha do traçado definitivo (diretriz);
- Fase de projeto final, onde o traçado escolhido será detalhado (por sub-trechos).

2.2 - Condições Técnicas da Rodovia:

As características técnicas das rodovias, como a velocidade diretriz ou de projeto, que são parâmetros fundamentais para a elaboração do projeto, é fixada pela Portaria 3602 do DNER, de 24 de outubro de 1969.

Solicitamos acompanharem pela apostila PAVIMENTAÇÕES DE ESTRADAS I – ORIENTAÇÕES PARA O TRABALHO, disponível no site:www.projeta.com.br.

2.3 – Reconhecimento Preliminar:

No plano diretor inicia-se o levantamento sistemático de dados sobre a região, tais como:

- 1. Geografia;
- 2. Demografia;
- 3. Topografia (geomorfologia);
- 4. Hidrologia (drenagem);
- 5. Geologia;
- Pedologia (solos);
- 7. Fitologia (vegetação);
- 8. Clima.

2.3 – Reconhecimento Preliminar:

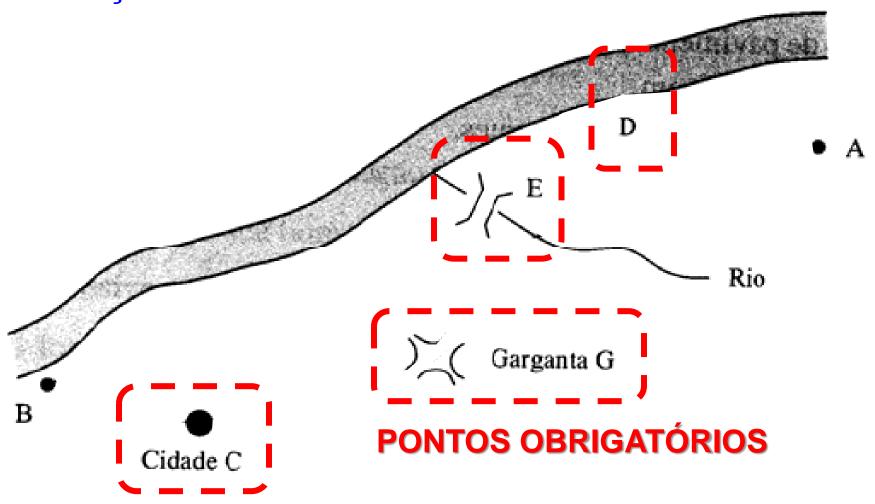
Procura-se, dentre outros:

- 1. Publicações pertinentes;
- 2. Levantamentos aerofotogramétricos;
- 3. Fotos aéreas;
- 4. Mapas Geológicos;
- 5. Registros de pluviometria;
- 6. Registros de enchentes em baixadas;
- 7. Projetos rodoviários existentes na área;
- 8. Dados estatísticos da região.
- 9. Clima.

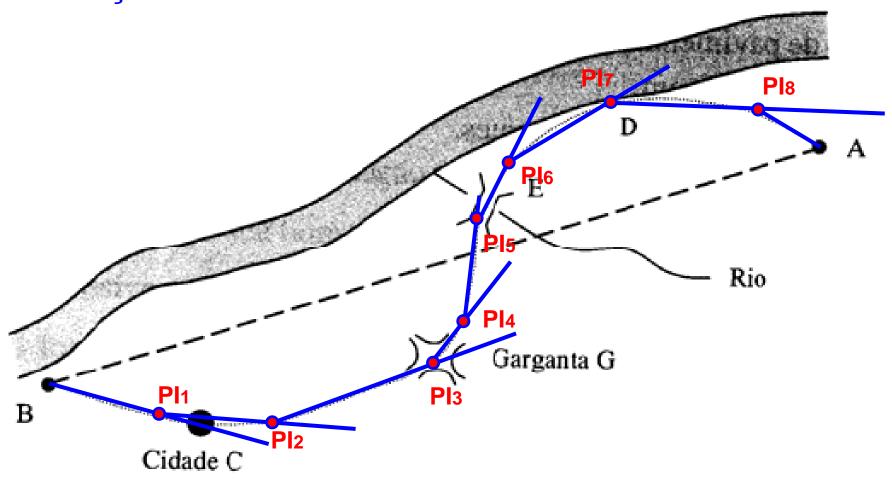
2.3 – Reconhecimento Preliminar:

Orgãos Públicos que poderão ser pesquisadas:

- 1. IGGSP Instituto Geográfico e Geológico de São Paulo;
- 2. IBGE Instituto Brasileiro de Geografia e Estatísticas;
- 3. Secretaria de Agricultura;
- 4. Instituto de Agronomia;
- 5. DAEE Departamento de Águas e Energia Elétrica;
- 6. Ministério da Aeronáutica;
- Ministério das Minas e Energia;
- 8. Serviços e Institutos de Meteorologia;
- 9. Secretaria de Planejamento;
- 10. DNIT Departamento Nacional de Infra-Estrutura de Transportes;
- 11. Prefeituras Municipais locais;
- 12. CETESP Companhia Estadual de Tecnologia de Saneamento Básico e de Defesa do Meio Ambiente.



2.4 – Ante-Projeto – Princípios Básicos para Locação do Traçado:


PROCURAR:

 Iniciar a locação pelos pontos obrigados e pontos de oferecem vantagens óbvias (gargantas, cidades, portos, estradas e pontes existentes);

2.4 – Ante-Projeto – Princípios Básicos para Locação do Traçado:

2.4 – Ante-Projeto – Princípios Básicos para Locação do Traçado:

2.4 – Ante-Projeto – Princípios Básicos para Locação do Traçado:

- Analisar a extensão utilizando-se dos conceitos de <u>COMPRIMENTO VIRTUAL</u> <u>SEGUNDO O TRABALHO MECÂNICO;</u>
- Custos de implantação, operacional da rodovia e dos veículos o menor possível;
- 4. Volume mínimo de terraplanagem;
- Optar por terrenos altos, se possível, próximo a divisores d'água;

2.4 – Ante-Projeto – Princípios Básicos para Locação do Traçado:

- Procurar terrenos com alto Índice de Suporte (IS), para minimizar o custo de pavimentação e obras de arte;
- Terreno de baixo custo de desapropriação, procurando coincidir com divisas das propriedades;
- Facilidades para a ligação com a rede rodoviária existente;

2.4 – Ante-Projeto – Princípios Básicos para Locação do Traçado:

- Cruzar em ângulo reto com rodovias, ferrovias e cursos d'água;
- Greide elevado em terreno plano, evitando-se inundações;
- 11. Locar curvas horizontais e verticais suaves;
- Na curvas ascendentes longas, íngreme, iniciar com inclinação maior e diminuí-la no alto;

2.4 – Ante-Projeto – Princípios Básicos para Locação do Traçado:

- Coincidência dos vértices das curvas verticais com os das curvas horizontais correspondentes;
- 14. Iniciar as curvas horizontais um pouco antes e terminar um pouco depois das curvas verticais correspondentes.

2.4 – Ante-Projeto – Princípios Básicos para Locação do Traçado:

EVITAR:

- 1. Terrenos de baixa capacidade de suporte e sujeitos a inundações (pântanos, brejos, etc.);
- 2. Terrenos rochosos em corte;
- Terreno sujeito a desmoronamentos, como por exemplo, encostas íngremes;
- 4. Destruições de plantações, matas ou demais paisagens que provoquem danos ao meio-ambiente;
- Cortes muito profundos (túneis) e aterros muito altos;
- Interseção em nível com outras rodovias ou ferrovias;

2.4 – Ante-Projeto – Princípios Básicos para Locação do Traçado:

EVITAR:

- 7. Concavidades em corte e convexidade em aterro;
- 8. Rampas íngremes longas;
- 9. Mudanças bruscas na distância de visibilidade;
- 10. Tangentes longas em planta;
- Curvas horizontais de pequena extensão quando o terreno for plano;
- Duas curvas horizontais no mesmo sentido unidas por tangente curta;
- 13. Associação de curva horizontal de grande raio a rampa de pequena extensão.

2.4 – Ante-Projeto – Princípios Básicos para Locação do Traçado:

Evidentemente, não será possível satisfazer todas as exigências mencionadas, frequentemente incompatíveis, na locação de cada traçado. Deve-se chegar a um meiotermo ponderado, utilizando-se do BOM

de grande raio a extensão.

M

2. TRAÇADO DE UMA RODOVIA:

2.5 – Roteiro para Anteprojeto:

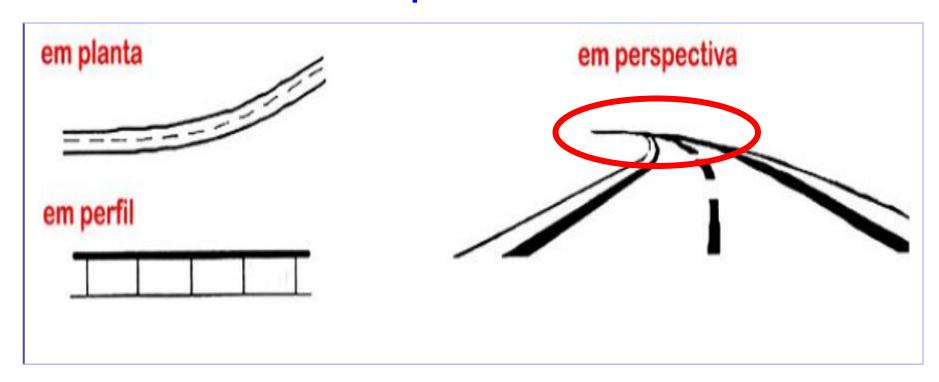
Curvas Verticais:

- Sobre o eixo da estrada, levantar a estaca de cada uma das curvas de nível que cortar o traçado.
- Plotar o perfil do terreno em escala horizontal 1:10.000 e vertical 1:1.000, utilizando papel milimetrado opaco.
- Para escolher o perfil do projeto (greide) devem ser considerados os seguintes dados:
- Rampa máxima = 6%;
- 2. Rampa mínima em cortes = 1%;
- 3. <u>Distância de visibilidade para frenagem: (Tabela 2)</u>

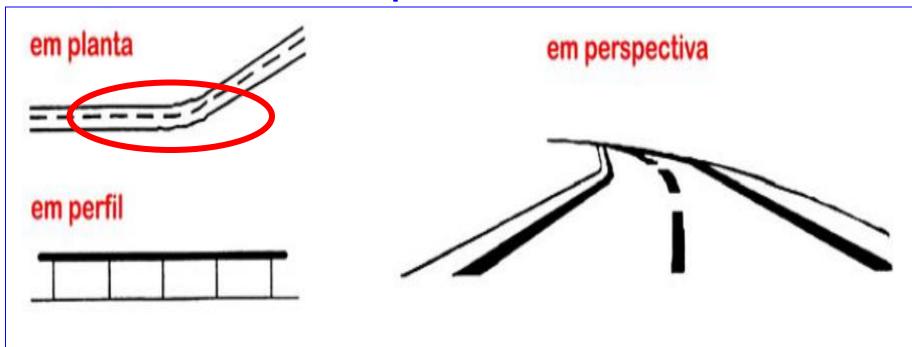
2.5 – Roteiro para Anteprojeto:

Curvas Verticais:

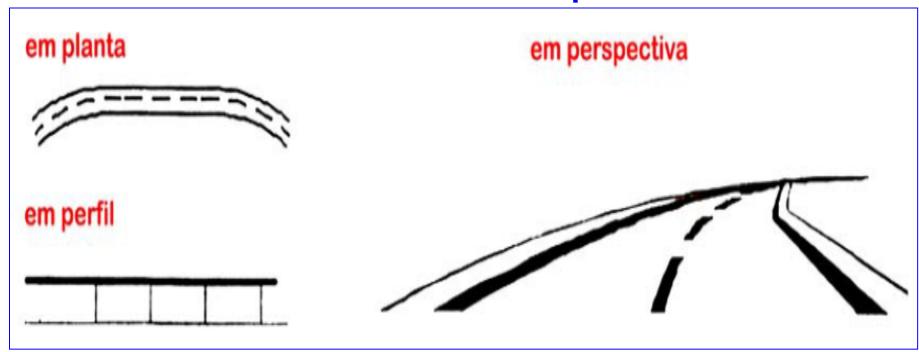
- 4. Altura máxima de cortes e aterros = 12 metros;
- 5. Altura mínima de aterro no ponto mais baixo do terreno = 3 metros;
- 6. Fator de redução = 1,2;
- 7. Seção transversal igual para corte e aterro = 1:1.



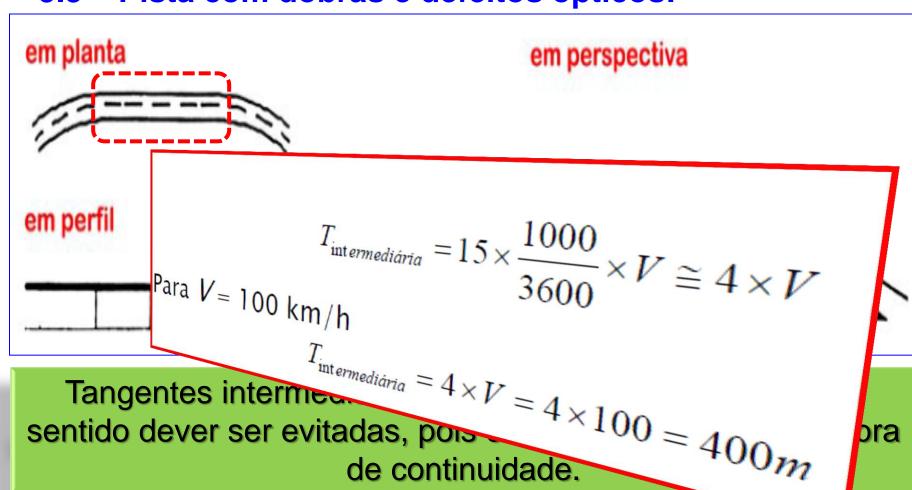
2.5 – Roteiro para Anteprojeto:


Curvas Verticais:

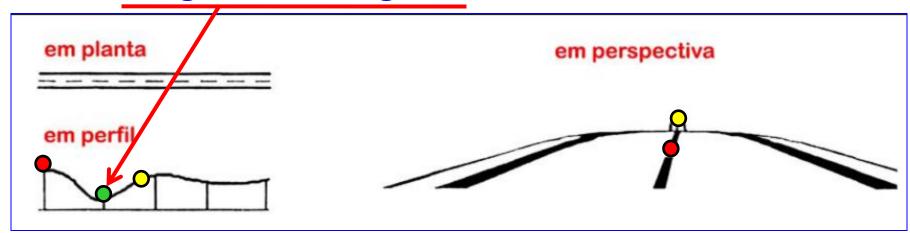
3.1 – Pista sem dobra óptica:



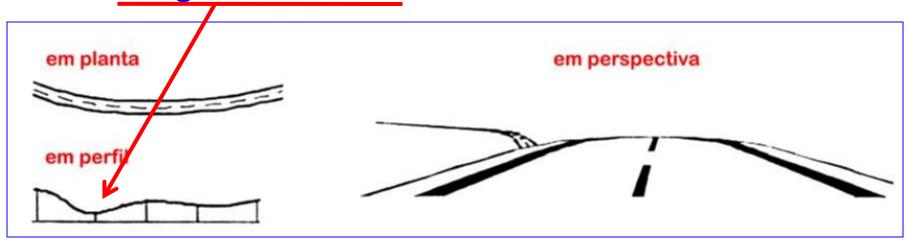
3.2 – Pista com dobra óptica:

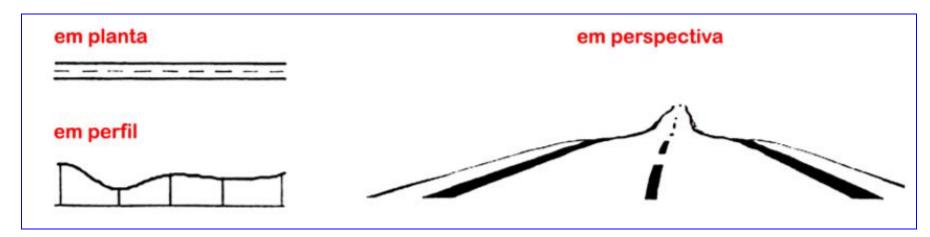

Curvas de pequeno desenvolvimento entre tangentes dever ser evitadas, pois causa aparência de quebra de continuidade.

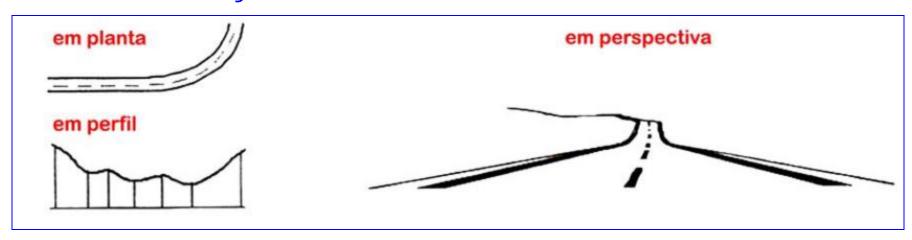
3.3 – Pista com dobras e defeitos ópticos:

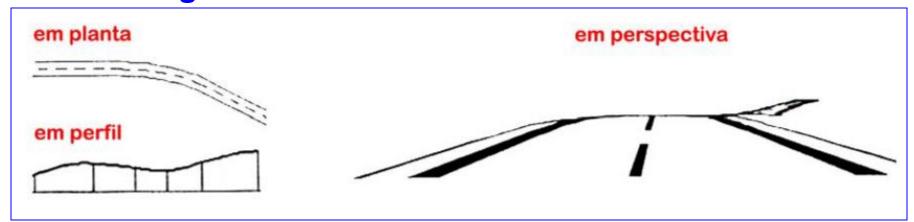


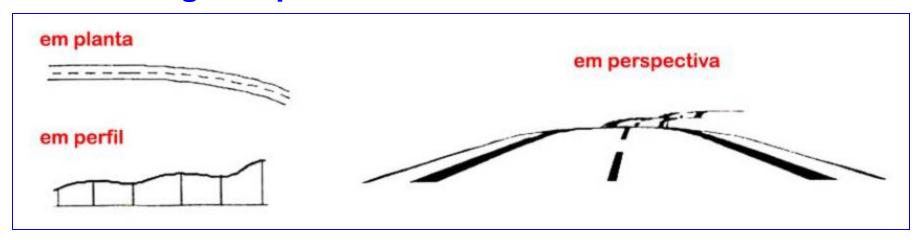
Tangentes intermediárias curtas entre curvas de mesmo sentido dever ser evitadas, pois causam aparência de quebra de continuidade.

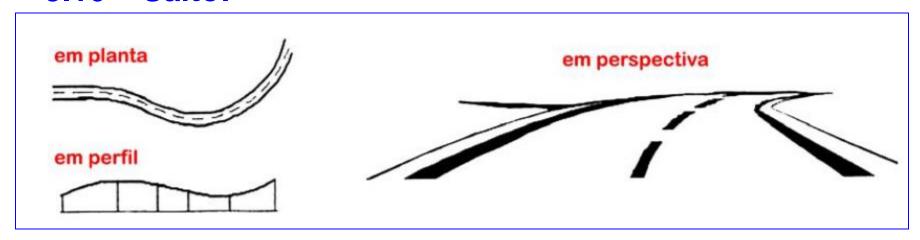

3.3 – Pista com dobras e defeitos ópticos:

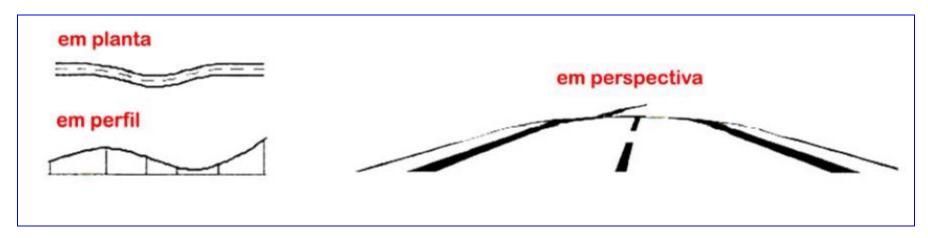

3.4 – Mergulho em tangente:

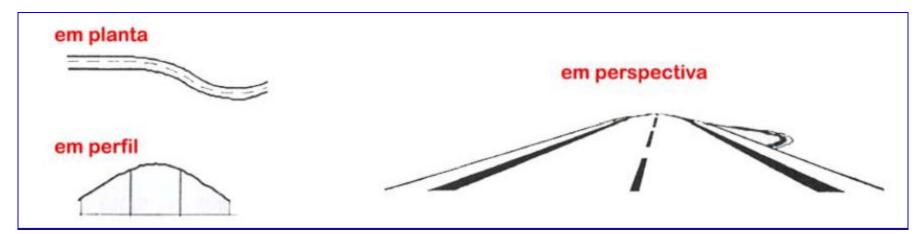

5.5 – Mergulho em curva:


3.6 – Abaulamento (Tobogã):


3.7 – Ondulações na curva:


3.8 – Mergulho raso:


3.9 – Mergulho profundo:


3.10 - Salto:

3.11 - Salto com deflexão:

3.12 – Início da Curva Horizontal na Área Convexa:

NORMAS ADMISSÍVEIS DE PROJETOS RODOVIÁRIOS PARA NOVAS ESTRADAS

				CLASSE			
ITEM		UNIDADE	REGIÃO	0	ı	П	III
]-	Velocidade de projeto ou diretriz	km/h	plana	120	100	80	60
			ondulada	100	80	60	40
			montanhosa	80	60	40	30
2-	Raio horizontal mínimo	m	plana	570	380	230	130
			ondulada	380	230	130	50
			montanhosa	230	130	50	30
3-	Greide máximo	%	plana	3	3	3	4
			ondulada	4	4,5	5	6
			montanhosa	5	6	7	8
4-	Distância de visibilidade p/ parada	m	plana	210	150	110	75
			Ondulada	150	110	75	50
			montanhosa	110	75	50	
5-	Distância de visibilidade p/ ultrapassagem	m	plana	730	650	500	350
			ondulada	650	500	350	175
			montanhosa	500	350	175	_

NORMAS ADMISSÍVEIS DE PROJETOS RODOVIÁRIOS PARA NOVAS ESTRADAS 7,20 plana 7,50 7,00 7,00 6.50 6,50 Largura do pavimento m a a ondulada 7,50 7,20 7,00 7,00 7,20 6,00 montanhosa 7,50 6,00 3,50 3,00 1,50 plana 2,00 ondulada 3,00 Largura do acostamento m 2,50 2,50 2,00 0,20 montanhosa 1,00 1,00 1,00 0,80 muito montanhosa plana 60 30 30 Faixa de domínio ondulada 70 40 40 m Montanhosa 80 50 50

٧

NORMAS ADMISSÍVEIS DE PROJETOS RODOVIÁRIOS PARA NOVAS ESTRADAS

				CLASSE			
ITEM		UNIDADE	REGIÃO	0	ı	П	III
1-	Velocidade de projeto ou diretriz	km/h	plana	120	100	80	60
			ondulada	100	80	60	40
			montanhosa	80	60	40	30
2-	Raio horizontal mínimo	m	plana	570	380	230	130
			ondulada	380	230	130	50
			montanhosa	230	130	50	30
3-	Greide máximo	%	plana	3	3	3	4
			ondulada	4	4,5	5	6
			montanhosa	5	6	7	8
4-	Distância de visibilidade p/ parada	m	plana	210	150	110	75
			Ondulada	150	110	75	50
			montanhosa	110	75	50	—
5-	Distância de visibilidade p/ ultrapassagem	m	plana	730	650	500	350
			ondulada	650	500	350	175
			montanhosa	500	350	175	_

